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ABSTRACT
Recommendation systems are being explored by Cable TV
operators to improve user satisfaction with services, such
as Live TV and Video on Demand (VOD) services. More
recently, Catch-up TV has been introduced, allowing users
to watch recent broadcast content whenever they want to.
These services give users a large set of options from which
they can choose from, creating an information overflow prob-
lem. Thus, recommendation systems arise as essential tools
to solve this problem by helping users in their selection,
which increases not only user satisfaction but also user en-
gagement and content consumption.

In this paper we present a learning to rank approach that
uses contextual information and implicit feedback to im-
prove recommendation systems for a Cable TV operator that
provides Live and Catch-up TV services. We compare our
approach with existing state-of-the-art algorithms and show
that our approach is superior in accuracy, while maintaining
high scores of diversity and serendipity.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software

General Terms
Measurement, Performance, Experimentation

Keywords
Recommender Systems, Live TV, Catch-up TV, Dataset
Evaluation, User Behavior

1. INTRODUCTION
Recommendation systems are being explored by Cable TV

operators to improve user satisfaction with services, such as
Live TV and Video on Demand (VOD) services. Live TV is
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the most popular since it was the first offered to the public
and is still the most available, where a client can watch any
video content that is being broadcast live [17]. VOD (video-
on-demand) complements the TV offer in which a client can
watch anytime any video content that was pre-recorded and
made available, usually a movie or series. More recently,
Catch-up TV has been introduced allowing users to watch
any video content that was broadcast live up to a few days
before (e.g. up to 7 days). These services give users a too
large set of options from which they can choose from.

Choosing between thousands of programs broadcast in
hundreds of TV channels, plus thousands of movies and se-
ries on VOD, creates an information overflow problem. All
this huge amount of possible choices turns the search and
exploration of TV guides slow and with the risk of missing
the best contents for a user. As result, the user dissatisfac-
tion increases along with a decrease of visualization time and
revenues that can even lead to churn. If users take too much
time exploring the TV guide, they might move on to another
activity. For instance, if Netflix members do not find some-
thing interesting to watch in about 60 to 90 seconds, they
could lose interest and move on to something else, such as a
video game, a book, or even a competing service [16]. An-
other study shows that on average users require 152 seconds,
suggesting difficulties in selecting a content [24].

Recommendation systems are essential tools for TV opera-
tors to help users to quickly find video contents they will like
to watch, improving in this way the user satisfaction with the
services provided. Recommendation systems have proven
their value in a large variety of businesses, such as video
streaming (e.g. Neflix, Youtube), music streaming (e.g. Spo-
tify, Pandora), selling products and services (e.g. Amazon,
Booking), and social networks (e.g. Facebook, Linkedin). In
TV, most research on recommendation systems is focused on
the VOD setting, where the Netflix prize had a great impact
on improving the state-of-the-art [4]. However, our previous
study shows that VOD gets only 1% of all user views [17].
Live and Catch-up TV services are the services that users
most use, but despite this fact, both are target of much less
research. Live and Catch-up TV present several differences
and challenges when compared to VOD:

dynamic program catalog: in VOD systems the catalog
remains mostly static with a few programs added or
removed every day at most. Collaborative-filtering al-
gorithms tend to work well in this setting. On Live
and Catch-up TV, due to the nature of broadcasting,
hundreds of programs are made available and removed
per hour, meaning the catalog is constantly changing.



This exacerbates the new item problem significantly,
since many programs do not have any user feedback
associated;

reduced user feedback: programs in VOD systems are usu-
ally available for a period of several months enabling
to collect enough user feedback on them. On the other
hand, Live and Catch-up TV are available during small
periods. On Live TV, a program is only available dur-
ing its broadcast. On Catch-up TV, a program is avail-
able for a few days after its broadcast. Thus, much less
feedback is collected and each program has a small
time window to be recommended.

implicit user feedback: in VOD systems users give indica-
tions of their preferences by explicitly rating contents
(e.g like/dislike). In Live and Catch-up TV the per-
centage of explicit ratings is small, which makes them
unfeasible for learning user preferences. On the other
hand, implicit feedback is largely available and used
instead, especially, whether a user watched the con-
tent more than a percentage (e.g. watched more than
50%).

In this paper, we present a recommendation system for
Live and Catch-up TV based on the learning to rank frame-
work fed by varied contextual information and implicit feed-
back. The proposed approach was evaluated with a large
and real dataset extracted from a large European Cable TV
operator. Results show that our approach achieves superior
performance when compared to recommendation algorithms
typically used in VOD.

Previous research focus mostly on accuracy (e.g. RMSE)
and ranking metrics (e.g. nDCG) to evaluate the quality
of recommendations [4]. Other metrics considering diversity
and novelty are also important for users, but different users
can give more value to some metrics over others. For in-
stance, a user might prefer more diverse recommendations
even if they lose accuracy. Another user might prefer the
opposite. Some screens in the user interface can also be
adjusted to different goals. For instance, a screen with rec-
ommendations that intend to surprise the users should show
contents with higher serendipity. Thus, we present a simple
and flexible algorithm to maximize the recommendations for
multiple metrics.

This paper is organized as follows: In Section 2 we de-
scribe existing recommendation approaches for each studied
TV setting. Section 3 presents our learning to rank approach
with contextual information. Section 4 details the experi-
mental setup and Section 5 shows the results. Conclusions
are presented in Section 6.

2. RELATED WORK
In this section we present existing recommendation algo-

rithms and systems applied to the TV setting.
A common baseline algorithm is the Popular Items [14,

31]. It returns the top-n items with the highest number of
occurrences over a training period. Each user receives the
same unpersonalized list of recommendations. User Popular
Items is a more personalized baseline that counts the user’s
most watched items over the training period [31]. Each user
receives the top-n items with the occurrences in their watch-
ing history.

Collaborative-filtering algorithms recommend items based
on the preferences of similar users. For instance, item-based
collaborative-filtering relies on user ratings to calculate the
similarity between items using functions, such as the cosine
similarity or pearson correlation [27]. Then, the more sim-
ilar items not rated by the user are returned considering
the previous ratings given by the same user. Matrix fac-
torization techniques support a set of collaborative-filtering
algorithms where user and items latent vectors are inferred
from a rating matrix. Weighted Regularized Matrix Factor-
ization is a common matrix factorization technique that uses
alternating least squares [19].

Content-based filtering algorithms do not use user rat-
ings. They instead use items’ metadata to provide similar
recommendations [25]. A user profile is typically created by
looking at the items consumed by the user, and then, the
most similar items to the profile are returned. A typical
implementation is to create vector representations of items
based on their metadata, such as category and author. Rec-
ommendations are generated by calculating the cosine sim-
ilarity between the user and the item.

2.1 Video On Demand (VOD)
VOD services allow the user to watch video content when

they choose to, rather than waiting for a scheduled broad-
cast. Access to the content is given either by paying to watch
a specific item or by subscribing to a catalog of items. Each
program is typically available for a large time span.

Most recommendation systems research were designed with
the VOD setting in mind. Datasets, such as Movielens, have
supported the evaluation of many collaborative-filtering al-
gorithms that in general present good results [18]. The Net-
flix prize has also helped to enhance collaborative-filtering
algorithms in this area [4].

There are many examples of VOD systems. Bambini et
al. generated VOD recommendations using an item-based
collaborative-filtering, a matrix factorization collaborative-
filtering and a content-based algorithms [5]. It was observed
that collaborative-filtering methods performed better than
the content-based one.

Yu et al. [30] presented a study of a large deployed VOD
system. They studied the user behaviour when interacting
with the system and found that the recommendation system
influences the popularity of the items in the system.

Research on exploring context-aware recommendations in
movies has also achieved promising results by improving the
recommendations accuracy [26].

2.2 Live TV
In TV broadcasting, programs are scheduled to be shown

at a predefined time and channel which the user has to tune
to watch. The catalog of programs available to the user
is highly dynamic because a program can only be watched
during its scheduled broadcast. Recommendation systems
for Live TV have to be able to recommend programs being
broadcast at the moment or to recommend scheduled pro-
grams. Originally, recommendation systems for TV were in-
troduced as an extension to TV guides, where people could
input their favorite programs and get recommendations for
programs to watch at a later date when they were broad-
cast. An example of such service was PTV, a website that
generated personalized TV guides [11].

Since the introduction of digital Set-Top Boxes (STB),



cable TV operators started to provide recommendations di-
rectly onto their users’ TV sets. Zimmerman et al. intro-
duced a recommendation system that collects implicit and
explicit user feedback [34]. In 2004, TiVo allowed users to
receive recommendations for TV programs along with their
broadcast date [3]. Their STBs had the feature to auto
record recommended shows so the user could watch the pro-
gram at a later date.

Bambini et al. provided Live TV recommendations for
new programs using a content-based algorithm that uses the
items’ metadata to find similarities, contributing to dimin-
ish the cold start problem [5]. Turrin et al. explored the
user watching habits to provide Live TV recommendations
that adapt to the user interests in each timeslot [28]. They
introduced the smoothed time context algorithm that uses
contextual information, such as program channel and cat-
egory, to return the most appropriate recommendation for
each time slot.

2.3 Catch-up TV
Catch-up TV is a type of service that allows users to time-

shift programs previously broadcast on TV and watch them
at a later date. A program is typically made available for a
few days on Catch-up TV after it is broadcast on TV. An
example of a Catch-up TV service is the BBC iPlayer [2].

Not many researchers in the recommendation systems area
have focused on Catch-up TV. Some research treats Catch-
up TV as a part of VOD services, partly because these ser-
vices typically have similar delivery infrastructures [15, 31].
Xu et al. evaluated a Catch-up TV service for TV series [29].
They developed a recommender for previously watched se-
ries based on the user watching history. They also developed
a recommender for series not watched by the user, using
collaborative-filtering, content-based algorithms and matrix
factorization.

2.4 Combined Recommenders
Some studies were conducted on recommendation systems

for Live TV and VOD or Live and Catch-up TV. The IPTV
recommendation system developed by Bambini et al. gen-
erates recommendations for Live TV and VOD content [5].
These services are compared regarding their compatibility
with existing collaborative-filtering and content-based algo-
rithms. Due to the absence of user ratings for future Live
TV content, collaborative-filtering algorithms were shown to
not be effective, with content-based algorithms used as an
alternative.

Yuan et al. [31] developed a context-aware recommenda-
tion system for Live and Catch-up TV. They slightly im-
proved accuracy, diversity and novelty metrics when com-
paring with algorithms without context.

3. LEARNING TO RANK APPROACH WITH
CONTEXTUAL INFORMATION

Previous research showed that combinations of ranking
models tend to provide better results than any single model
[12, 22]. The same is valid for recommendation systems since
some algorithms work better in some settings and not so well
in others [5]. For instance, we can divide the programs into
3 types:

1. new programs never broadcast before and, thus, there
is no information on user preferences about them (cold

start of items);

2. programs broadcast before, but not watched by the
user (e.g. a missed episode). For these programs we
only have preferences from other users;

3. programs broadcast before and watched by the user.
This can be new episodes or a repeated program.

Following this division, we expect a good performance for
collaborative-filtering algorithms on points 2) and 3), be-
cause they will be able to find similarities between users
according to what they watched. However, collaborative-
filtering will completely fail on point 1) because these sim-
ilarities will not be found due to lack of user preferences.
Content-based algorithms can give good performance for 1),
since the computed similarity is based on the characteristics
of programs, such as the title and category. They do not
need to know whether users have watched the programs.
On the other hand, they tend to recommend programs with
the same characteristics of the ones previously seen, thus,
affecting diversity (over-specializing). The number of times
a user watched a program is a good prediction if the user
will watch it again, but can be only used for point 3). These
examples serve to show that one type of algorithm do not
work well in all the cases. It is therefore necessary to com-
bine them in a way that they can complement each other.

There are several hybrid combinations that try to get the
best of each algorithm and overcome the drawbacks of algo-
rithms individually [7, 8, 13]. Most research focus on com-
bining content-based and collaborative-filtering approaches
using strategies, such as weighting the score of each algo-
rithm, switching between algorithms according the case or
even mixing the recommendation lists produced by each al-
gorithm. However, these strategies are difficult to tune when
there are many data dimensions and possible combinations.

Learning to rank (L2R) is another way to combine these
algorithms aimed to provide the best ranking list accord-
ing to the preferences of the users. L2R cast the generation
of recommendation lists as a supervised machine learning
ranking problem [21]. In this work, L2R algorithms receive
as input a training set composed by n users, where each
user has associated a set of programs. Each pair <user,
program> contains a feature vector and a user preference
according to whether the user watched the program. The
L2R algorithms then learn ranking models by minimizing
the difference between their prediction and the user pref-
erences. Finally, each model is evaluated with a test set
similar to the training set. The predictions of the model are
compared with the known user preferences (ground truth)
to measure its effectiveness.

L2R have been extensively employed in many systems
with good results, such as web search engines, ad targeting
and recommendation systems [4, 9, 10]. As far as we know,
this is the first time that L2R is used to provide recommen-
dations for users of Cable TV. We selected LambdMART [6]
for our experiments, but other learning to rank algorithms
could also be used. LambdMART is a Gradient Boosted Re-
gression Trees (a.k.a. Multiple Additive Regression Trees)
algorithm which is part of the solution that won the Yahoo!
Learning To Rank Challenge (Track 1) [9].

3.1 Recommendation Features
There are many techniques that exploit different data and

can be used to improve the recommendation lists. For in-



stance, demographic data can be used to tune the recom-
mendations to users’ age and gender, while context-aware
data can be used to tune for a time period or location. All
these data enables more personalized recommendations.

We computed 60 representative data features and algo-
rithms of different recommendation approaches and included
them in the dataset. For simplicity, we will refer to all as
features. We give an overview of the classes of features com-
puted, where each class exploits a different assumption:

• users tend to repeat the same programs & channels: vi-
sualization rankings and the relative visualization time
of programs and channels, per user and averaged by
all users, show which are the programs the users see
most, the time users spend watching them and the
global preferences. It is also important to know how
many episodes of a program were watched and remain
to see;

• users tend to repeat the same categories & subcate-
gories of contents: the same type of features as above,
but referring to categories (news, movies, TV series,
entertainment, sports, kids, documentaries) and sub-
categories (e.g. news-science, sports-soccer, movies-
action).

• time influences user preferences: weekend information
and period of the day of when a content was broadcast
and watched helps to differentiate user preferences over
the day and week. Since users watch more contents
broadcast recently, we also included the time passed
since a content was broadcast and the time passed
since the last time an episode was watched;

• users tend to see programs with similar textual descrip-
tion of their content: similarity functions (e.g. Jaccard
index, TFxIDF) between textual metadata (e.g. title,
description, actors) estimate how similar two contents
are. Stopwords were removed (e.g. the);

• users tend to see programs with similar characteris-
tics: content characteristics include features such as
whether it is a one shot program or a series with sev-
eral episodes, the number of episodes, the content age
and duration;

• similar users watch similar programs: based on the
idea of collaborative-filtering, we used algorithms such
as WRMF [19] and FunkSVD [1];

• closer periods are more important than far ones: since
the user preferences evolve over time, the last days or
weeks can provide a better estimate of user preferences.
For instance, if a user starts watching more documen-
taries about war in the last week, then he will be prob-
ably interested in similar recommendations. Hence, we
computed previous features with a week granularity.

3.2 Multi-objective Optimization
Most recommendation systems are optimized for accuracy

metrics, such as nDCG, but there are many other important
metrics from a user perspective. Users want to receive a
list of programs that they will like to watch, but they also
want diversity between these programs. On the same way,
users expect novel programs and sometimes to be surprised

with something completely unexpected. Our preliminary
user studies showed us that despite all these goals are im-
portant for users, the importance given to each one varies
per user. There is not one objective function that fits all and
could be used to optimize a general ranking model. Creat-
ing a ranking model for each user is very inefficient and does
not scale well. Thus, we use a different solution instead.
First, we optimize the ranking model for an accuracy metric
and then re-rank the list according to an objective function.
This is a simple and easy to implement solution. Moreover,
it provides good results and is very flexible to adjust recom-
mendations. This solution enables even the users to change
the objective function in the user interface.

We optimize to accuracy, because there is a tradeoff be-
tween accuracy and the other metrics. For instance, by im-
proving diversity the accuracy usually drops. Then, we ap-
ply GreedyRec (Algorithm 1), which is a greedy algorithm
that iteratively selects the program that maximizes a given
objective function up to a list of size k.

Algorithm 1 GreedyRec(programs, objective function, k)

1: list ⇐ {}
2: repeat
3: programsi ⇐

argmaxiobjective function(list
⋃

programsi)
4: list ⇐ list

⋃
programsi

5: programs ⇐ programs \ programsi
6: until length(programs) > 0 & length(list) < k
7: return list

We used the following objective function as an example
for our experiment:

objective function(L) =
0.5 · nDCG(L) + 0.25 · ILD(L) + 0.25 ·MSI(L)

L is the list of programs. This function allows to opti-
mize for 3 metrics combined: accuracy, diversity and nov-
elty. Other objective functions can be used to optimize for
other metrics.

4. EXPERIMENTAL SETUP
This section presents our experimental setup. First, we

give a brief description of the L2R dataset and recommen-
dation algorithms are compared. For last, we described the
evaluation methodology and metrics.

4.1 L2R Dataset
The L2R dataset is composed by a set of <user, program,

preference, features> quadruples, where the preference indi-
cates the preference degree of the user to the program. We
consider that a program was watched if the user saw more
than 50% of the program. In this case, we assigned a user
preference of 1 to the quadruple or 0 otherwise. We used
the percentage of visualization as implicit feedback from the
users, instead of explicit feedback such as the like/dislike
given by the users, because there are 115 times more data.
The features represent a vector of feature values, for the
<user, program> pair. The features are described in Sec-
tion 3.1.

The dataset contains a total of 83 million quadruples ex-
tracted from 12 weeks, between October and December of
2015. These quadruples are composed by 10 thousand users
randomly chosen that watched at least 10 programs per
week, and 21 thousand programs, which are all programs



available to the users during that period. Each user watched
in average 454 programs and each program was watched by
216 users on average.

Some programs were broadcast simultaneously in multiple
channels. For example, a program might be broadcast si-
multaneously in Standard and High Definition. We merged
the views so it only counts as one program. A program
is categorized into the following categories: News, TV Se-
ries, Entertainment, Kids, Documentaries, Sports, Movies
or Adults.

4.2 Algorithms compared
For comparison purposes, we employed 6 algorithms to

produce recommendations for our dataset:

Random: a weak baseline that produces random recom-
mendations. This is the closest of not having any rec-
ommendation algorithm.

Popular: the most watched programs among all users, as-
suming that on average a user is most likely to watch
what most users watched. This is the oposite of per-
sonalized recommendations, since all users receive the
same recommendations.

UserPopular: the programs most watched by the user (i.e.
a ranking of programs by visualization time).

WRMF: a matrix factorization technique for collaborative-
filtering where user and item latent vectors are inferred
from implicit feedback [19].

Content-based: a similarity function based on the average
similarity of a content and all the programs previously
seen by the user. The similarity is measured as the
sum of the cosine similarity of TFxIDF values for the
program title, description, actors and directors.

L2R: we used LambdaMART for this experiment. We used
as input the L2R dataset extracted from the TV con-
tents and users watching behaviour.

4.3 Evaluation Methodology & Metrics
Using 10 weeks of the dataset, we conducted a 5-fold cross

validation to evaluate the performance of the different algo-
rithms. Each fold used 6 consecutive weeks, by advancing
one week from the previous fold (1-6; 2-7; 3-8; 4-9 and 5-
10). The first 4 weeks of each fold were used for training,
the second to last for test, and the last for target. The final
results are the averages of the five tests.

We generated top-n lists of recommendations for each user
using all different algorithms. The performance of each al-
gorithm is the average on all users. We measured lists of
5 and 10 programs, because it is the typical size of recom-
mendation lists shown in Cable TV set-top-boxes. For Live
TV, a list of recommendations is generated for programs
being broadcast at the times the user accessed the system.
For Catch-up TV, the recommendations aimed all programs
broadcast in the last 7 days.

Each algorithm was evaluated with a set of metrics that
are complementary to each other, representing different goals
that a recommendation system should pursue:

nDCG (Normalized Cumulative Discounted Gain) is an ac-
curacy metric that gives a higher score to programs in
higher ranking positions that a user watched [20].

ILD (Intra List Diversity) is a diversity metric that cal-
culates the average distance between all pairs of pro-
grams in the recommended list [33]. We defined the
distance function between a pair of programs as:

d(i, j) = 1−(
1

3
cat(i, j)+

1

3
subcat(i, j)+

1

3
channel(i, j))

cat(i, j), subcat(i, j) and channel(i, j) returns 1 if the
pair of programs i and j have the same category, sub-
category or channel, respectively. They return 0 oth-
erwise.

MSI (Mean Self Information) is a novelty metric based on
the number of users that did not watched the pro-
gram [32].

Unexpectedness is a serendipity metric that calculates how
diverse the recommendation list is from the user watch-
ing history [23]. It uses the same distance function as
in ILD.

5. RESULTS
In this section, we present the evaluation results for each

algorithm applied to Live TV and Catch-up TV. Notice that
the recommendations for Live TV include just the programs
that were being broadcast at the time a user was watch-
ing TV, while for Catch-up TV all programs broadcast in
the last 7 days were included. We present results for the
4 metrics, for accuracy considering only programs that the
user never saw, and for the objective function described in
Section 3.2.

Table 1 shows the results for Live TV using Live TV and
Catch-up TV implicit feedback. Our L2R approach with
LambdaMART presents the best accuracy with a NDCG@5
of 0.726 and a NDCG@10 of 0.631. It has around 4 per-
centage points higher than the second algorithm, which is
the UserPopular. This small difference can be explained by
the fact that users tend to repeat many programs in Live
TV as detailed in our Cable TV characterization [17]. For
instance, users tend to see the same news, soccer programs
and soap operas. The L2R algorithms modeled that behav-
ior and gave higher scores to programs and channels that
users usually see. We can discuss whether these recommen-
dations are useful, since the user would probably see these
programs anyway. We believe they are useful, because they
serve as a shortcut to programs and increase the confidence
in the system [34]. Moreover, L2R presents a NDCG@5 of
0.115 and NDCG@10 of 0.081 when considering only the
new programs that were suggested and watched, contrary
to the UserPopular algorithm that only suggests repeated
programs. If we relax the ”preference assumption” and as-
sume that the user likes a program if watched more than
10 minutes instead of 50%, these metrics increase to 0.296
and 0.250. These results are much superior than the ones
reported by Xu et al. [29] despite not directly comparable.

Regarding diversity, novelty and serendipity, random al-
gorithm provides the best results. On the other hand, its ac-
curacy is close to 0. Popular presents the second worst accu-
racy, showing that unpersonalized recommendations, as ex-
pected, are worse than personalized. L2R presents good di-
versity (ILD@5 of 0.683 and ILD@10 of 0.692) and serendip-
ity (Seren@5 of 0.870 and Seren@10 of 0.869), but low nov-
elty (MSI@5 of 0.193 and MSI@10 of 0.206). UserPopular



Table 1: Live TV results (with Live and Catch-up TV implicit feedback)
Accuracy Diversity Novelty Serendipity Accuracy (new) Global

nDCG
@5

nDCG
@10

ILD
@5

ILD
@10

MSI
@5

MSI
@10

Seren
@5

Seren
@10

nDCG
@5

nDCG
@10

Obj
@5

Obj
@10

Random 0.002 0.002 0.919 0.920 0.677 0.679 0.935 0.935 0.003 0.003 0.400 0.401
Popular 0.295 0.252 0.600 0.550 0.058 0.081 0.888 0.887 0.007 0.006 0.312 0.283
UserPopular 0.699 0.603 0.708 0.727 0.186 0.199 0.872 0.872 0.000 0.000 0.573 0.533
WRMF 0.318 0.289 0.534 0.598 0.129 0.138 0.862 0.864 0.020 0.017 0.325 0.329
Content-based 0.435 0.396 0.525 0.550 0.238 0.242 0.840 0.836 0.047 0.038 0.408 0.396
L2R 0.726 0.631 0.683 0.692 0.193 0.206 0.870 0.869 0.115 0.081 0.582 0.540
GreedyRec 0.524 0.434 0.735 0.793 0.701 0.678 0.843 0.843 0.030 0.011 0.621 0.585

Table 2: Catch-up TV results (with Live and Catch-up TV implicit feedback)
Accuracy Diversity Novelty Serendipity Accuracy (new) Global

nDCG
@5

nDCG
@10

ILD
@5

ILD
@10

MSI
@5

MSI
@10

Seren
@5

Seren
@10

nDCG
@5

nDCG
@10

Obj
@5

Obj
@10

Random 0.002 0.002 0.919 0.920 0.677 0.679 0.935 0.935 0.001 0.002 0.400 0.401
Popular 0.293 0.247 0.600 0.541 0.058 0.080 0.888 0.887 0.021 0.018 0.311 0.279
UserPopular 0.694 0.600 0.708 0.727 0.200 0.213 0.872 0.872 0.000 0.000 0.574 0.535
WRMF 0.306 0.277 0.523 0.588 0.153 0.162 0.856 0.858 0.034 0.030 0.322 0.326
Content-based 0.345 0.316 0.503 0.526 0.346 0.354 0.837 0.831 0.059 0.052 0.385 0.378
L2R 0.726 0.630 0.683 0.692 0.199 0.214 0.870 0.868 0.110 0.093 0.583 0.541
GreedyRec 0.556 0.440 0.753 0.784 0.606 0.654 0.850 0.857 0.027 0.010 0.618 0.580

presents similar results. Both algorithms recommend pro-
grams that are popular for most users.

The results of the GreedyRec demonstrates well that fol-
lowing the objective function as intended, the diversity and
novelty increased in detriment of accuracy which decreased.
For the objective function the GreedyRec achieved the best
score with 0.621 for the top-5 and 0.585 for the top-10 rec-
ommended programs.

Table 2 presents similar results for Catch-up TV since the
algorithms used exactly the same data to learn and were
evaluated in the same manner (i.e. whether the program
was watched up to 7 days after the broadcast), as in Live
TV. The difference is that in Live TV it was recommended
only programs that were being broadcast at the time a user
was watching TV. In fact, we used the same algorithms with
a post-filter. Nevertheless, results suggest that the users saw
mostly programs of the same periods when they usually see
TV, but this requires further study.

Table 3 shows the results for Catch-up TV, but using just
the implicit feedback of Catch-up TV. This is 10% of the vol-
ume of the data extracted from Live TV. Hence, as expected,
all accuracy results decreased, showing that the data from
Live TV can be used to improve the results of Catch-up TV.
The same tendencies persist, with L2R being the best algo-
rithm for accuracy, but with a larger difference between L2R
and UserPopular. It is better around 4% in NDCG@5 and
7% in NDCG@10. L2R has also the best accuracy for rec-
ommending new programs. GreedyRec continues to present
the best score for the objective function.

Typical approaches used in VOD, such as collaborative-
filtering and content-based filtering, present around half the
accuracy of L2R and suggest almost no new programs to the
user. The bias of collaborative-filtering methods for popular
programs and the over-specialization of content-based filter-
ing makes them bad solutions for Live and Catch-up TV.
This is in accordance with their low diversity and novelty.

6. CONCLUSIONS
Most research on recommendation systems for TV is de-

signed for the VOD setting, but VOD only gets 1% of all
views of the users of a Cable TV operator. Moreover, our
results show that typical approaches used in VOD, such as
collaborative-filtering and content-based filtering, are not so
effective for Live and Catch-up TV which receive the other
99% of views.

We presented a learning to rank approach that uses con-
textual information and implicit feedback to improve recom-
mendation systems for a Cable TV operator that provides
Live and Catch-up TV services. The contextual information,
which we describe with insights from a previous characteri-
zation, enables to get more personalized recommendations.
The implicit feedback augments the user preferences learned
without the users having to explicitly submit this informa-
tion. We evaluated our approach against state-of-the-art
algorithms using accuracy, diversity, novelty and serendipi-
tious metrics. For this evaluation we used a large and real
dataset extracted from a large European Cable TV operator.
Results show that our approach is superior in accuracy and
accuracy for programs never seen before, while maintaining
high scores of diversity and serendipity. Still, recommend-
ing programs never seen before is a much harder task that
requires further investigation.

A multi-objective optimization technique based on re-ranking
is proposed, enabling to quickly adjust recommendations to-
ward a parameterized objective function. This allows, for in-
stance, to provide recommendations more accurate for some
users and more diverse for others depending on their prefer-
ences. Imagine the case where the Cable TV operator wants
to increase revenue. The objective function may favor profit.
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Table 3: Catch-up TV results (with Catch-up TV implicit feedback only)
Accuracy Diversity Novelty Serendipity Accuracy (new) Global

nDCG
@5

nDCG
@10

ILD
@5

ILD
@10

MSI
@5

MSI
@10

Seren
@5

Seren
@10

nDCG
@5

nDCG
@10

Obj
@5

Obj
@10

Random 0.002 0.003 0.920 0.921 0.773 0.774 0.914 0.914 0.001 0.001 0.424 0.425
Popular 0.127 0.134 0.737 0.798 0.313 0.344 0.888 0.892 0.025 0.026 0.326 0.352
UserPopular 0.432 0.393 0.733 0.775 0.474 0.544 0.761 0.798 0.000 0.000 0.518 0.526
WRMF 0.073 0.082 0.496 0.574 0.388 0.401 0.842 0.844 0.027 0.029 0.258 0.284
Content-based 0.317 0.330 0.541 0.564 0.506 0.530 0.690 0.692 0.039 0.040 0.420 0.438
L2R 0.473 0.459 0.644 0.671 0.406 0.424 0.718 0.726 0.061 0.061 0.499 0.503
GreedyRec 0.332 0.321 0.835 0.820 0.661 0.659 0.822 0.853 0.011 0.012 0.540 0.531
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